Complex-Valued Adaptive Signal Processing Using Nonlinear Functions

نویسندگان

  • Hualiang Li
  • Tülay Adali
چکیده

We describe a framework based on Wirtinger calculus for adaptive signal processing that enables efficient derivation of algorithms by directly working in the complex domain and taking full advantage of the power of complex-domain nonlinear processing. We establish the basic relationships for optimization in the complex domain and the real-domain equivalences for firstand secondorder derivatives by extending the work of Brandwood and van den Bos. Examples in the derivation of firstand second-order update rules are given to demonstrate the versatility of the approach.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A fully adaptive normalized nonlinear gradient descent algorithm for complex-valued nonlinear adaptive filters

A fully adaptive normalized nonlinear complex-valued gradient descent (FANNCGD) learning algorithm for training nonlinear (neural) adaptive finite impulse response (FIR) filters is derived. First, a normalized nonlinear complex-valued gradient descent (NNCGD) algorithm is introduced. For rigour, the remainder of the Taylor series expansion of the instantaneous output error in the derivation of ...

متن کامل

Complex-Valued Neural Networks for Equalization of Communication Channels

The equalization of digital communication channel is an important task in high speed data transmission techniques. The multipath channels cause the transmitted symbols to spread and overlap over successive time intervals. The distortion caused by this problem is called inter-symbol interference (ISI) and is required to be removed for reliable communication of data over communication channels. I...

متن کامل

Complex-valued neural networks with adaptive spline activation function for digital-radio-links nonlinear equalization

In this paper, a new complex-valued neural network based on adaptive activation functions is proposed. By varying the control points of a pair of Catmull–Rom cubic splines, which are used as an adaptable activation function, this new kind of neural network can be implemented as a very simple structure that is able to improve the generalization capabilities using few training samples. Due to its...

متن کامل

Controlling Nonlinear Processes, using Laguerre Functions Based Adaptive Model Predictive Control (AMPC) Algorithm

Laguerre function has many advantages such as good approximation capability for different systems, low computational complexity and the facility of on-line parameter identification. Therefore, it is widely adopted for complex industrial process control. In this work, Laguerre function based adaptive model predictive control algorithm (AMPC) was implemented to control continuous stirred tank rea...

متن کامل

Real-time damage detection of bridges using adaptive time-frequency analysis and ANN

Although traditional signal-based structural health monitoring algorithms have been successfully employed for small structures, their application for large and complex bridges has been challenging due to non-stationary signal characteristics with a high level of noise. In this paper, a promising damage detection algorithm is proposed by incorporation of adaptive signal processing and Artificial...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • EURASIP J. Adv. Sig. Proc.

دوره 2008  شماره 

صفحات  -

تاریخ انتشار 2008